6,653 research outputs found

    Polycritical Gravities

    Get PDF
    We present higher-derivative gravities that propagate an arbitrary number of gravitons of different mass on (A)dS backgrounds. These theories have multiple critical points, at which the masses degenerate and the graviton energies are non-negative. For six derivatives and higher there are critical points with positive energy.Comment: Version to be publishe

    Perturbations of Matter Fields in the Second-order Gauge-invariant Cosmological Perturbation Theory

    Full text link
    Some formulae for the perturbations of the matter fields are summarized within the framework of the second-order gauge-invariant cosmological perturbation theory in a four dimensional homogeneous isotropic universe, which is developed in the papers [K.Nakamura, Prog.Theor.Phys., 117 (2007), 17.]. We derive the formulae for the perturbations of the energy momentum tensors and equations of motion for a perfect fluid, an imperfect fluid, and a signle scalar field, and show that all equations are derived in terms of gauge-invariant variables without any gauge fixing.Comment: (v1) 76 pages, no figure; (v2) minor revision, typos are corrected, references are added; (v3) Title is changed, Compactified into 55 pages, Comment on the comparison with the other work is added; (v4)typos are correcte

    Quantization of the black hole area as quantization of the angular momentum component

    Full text link
    In transforming from Schwarzschild to Euclidean Rindler coordinates the Schwarzschild time transforms to a periodic angle. As is well-known, this allows one to introduce the Hawking temperature and is an origin of black hole thermodynamics. On the other hand, according to quantum mechanics this angle is conjugate to the zz component of the angular momentum. From the commutation relation and quantization condition for the angular momentum component it is found that the area of the horizon of a Schwarzschild black hole is quantized with the quantum ΔA=8πlP2\Delta A = 8\pi l_P^{2}. It is shown that this conclusion is also valid for a generic Kerr-Newman black hole.Comment: 4 pages (revtex), no figures; a boundary condition for the differential equation (15) added; the absent of the remnants in the approach noted; a reference added; accepted by Physical Review D for publicatio

    Matter instability in modified gravity

    Get PDF
    The Dolgov-Kawasaki instability discovered in the matter sector of the modified gravity scenario incorporating a 1/R correction to Einstein gravity is studied in general f(R) theories. A stability condition is found in the metric version of these theories to help ruling out models that are unviable from the theoretical point of view.Comment: 4 pages, revtex, to appear in Phys. Rev. D. In the revised version, an error concerning the Palatini version of these theories has been corrected and the references update

    A Rigorous Derivation of Electromagnetic Self-force

    Full text link
    During the past century, there has been considerable discussion and analysis of the motion of a point charge, taking into account "self-force" effects due to the particle's own electromagnetic field. We analyze the issue of "particle motion" in classical electromagnetism in a rigorous and systematic way by considering a one-parameter family of solutions to the coupled Maxwell and matter equations corresponding to having a body whose charge-current density Ja(λ)J^a(\lambda) and stress-energy tensor Tab(λ)T_{ab} (\lambda) scale to zero size in an asymptotically self-similar manner about a worldline γ\gamma as λ0\lambda \to 0. In this limit, the charge, qq, and total mass, mm, of the body go to zero, and q/mq/m goes to a well defined limit. The Maxwell field Fab(λ)F_{ab}(\lambda) is assumed to be the retarded solution associated with Ja(λ)J^a(\lambda) plus a homogeneous solution (the "external field") that varies smoothly with λ\lambda. We prove that the worldline γ\gamma must be a solution to the Lorentz force equations of motion in the external field Fab(λ=0)F_{ab}(\lambda=0). We then obtain self-force, dipole forces, and spin force as first order perturbative corrections to the center of mass motion of the body. We believe that this is the first rigorous derivation of the complete first order correction to Lorentz force motion. We also address the issue of obtaining a self-consistent perturbative equation of motion associated with our perturbative result, and argue that the self-force equations of motion that have previously been written down in conjunction with the "reduction of order" procedure should provide accurate equations of motion for a sufficiently small charged body with negligible dipole moments and spin. There is no corresponding justification for the non-reduced-order equations.Comment: 52 pages, minor correction

    A general maximum entropy principle for self-gravitating perfect fluid

    Full text link
    We consider a self-gravitating system consisting of perfect fluid with spherical symmetry. Using the general expression of entropy density, we extremize the total entropy SS under the constraint that the total number of particles is fixed. We show that extrema of SS coincides precisely with the relativistic Tolman-Oppenheimer-Volkoff (TOV) equation of hydrostatic equilibrium. Furthermore, we apply the maximum entropy principle to a charged perfect fluid and derive the generalized TOV equation. Our work provides a strong evidence for the fundamental relationship between general relativity and ordinary thermodynamics.Comment: 13 pages, no figure. The arguments have been improved so that the assumption p=p(\rho) is no longer neede

    How often does the Unruh-DeWitt detector click beyond four dimensions?

    Full text link
    We analyse the response of an arbitrarily-accelerated Unruh-DeWitt detector coupled to a massless scalar field in Minkowski spacetimes of dimensions up to six, working within first-order perturbation theory and assuming a smooth switch-on and switch-off. We express the total transition probability as a manifestly finite and regulator-free integral formula. In the sharp switching limit, the transition probability diverges in dimensions greater than three but the transition rate remains finite up to dimension five. In dimension six, the transition rate remains finite in the sharp switching limit for trajectories of constant scalar proper acceleration, including all stationary trajectories, but it diverges for generic trajectories. The divergence of the transition rate in six dimensions suggests that global embedding spacetime (GEMS) methods for investigating detector response in curved spacetime may have limited validity for generic trajectories when the embedding spacetime has dimension higher than five.Comment: 30 pages. v3: presentational improvement. Published versio

    Gravity-induced vacuum dominance

    Full text link
    It has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, sub-dominant contributions. This view seemed to be endorsed by the seminal results obtained over the last decades in the context of renormalization of quantum fields in curved spacetimes. Here, however, we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background spacetime, to become dominant over any classical energy-density component. This semiclassical gravity effect finds its roots in the infrared behavior of fields on curved spacetimes. By estimating the time scale for the vacuum energy density to become dominant, and therefore for backreaction on the background spacetime to become important, we argue that this vacuum dominance may bear unexpected astrophysical and cosmological implications.Comment: To appear in Phys. Rev. Lett

    Integrable Cosmological Models From Higher Dimensional Einstein Equations

    Get PDF
    We consider the cosmological models for the higher dimensional spacetime which includes the curvatures of our space as well as the curvatures of the internal space. We find that the condition for the integrability of the cosmological equations is that the total space-time dimensions are D=10 or D=11 which is exactly the conditions for superstrings or M-theory. We obtain analytic solutions with generic initial conditions in the four dimensional Einstein frame and study the accelerating universe when both our space and the internal space have negative curvatures.Comment: 10 pages, 2 figures, added reference, corrected typos(v2), explanation improved and references and acknowledgments added, accepted for publication in PRD(v3

    The Effects of Stress Tensor Fluctuations upon Focusing

    Full text link
    We treat the gravitational effects of quantum stress tensor fluctuations. An operational approach is adopted in which these fluctuations produce fluctuations in the focusing of a bundle of geodesics. This can be calculated explicitly using the Raychaudhuri equation as a Langevin equation. The physical manifestation of these fluctuations are angular blurring and luminosity fluctuations of the images of distant sources. We give explicit results for the case of a scalar field on a flat background in a thermal state.Comment: 26 pages, 1 figure, new material added in Sect. III and in Appendices B and
    corecore